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Abstract

Experiments which require mixing among spins with large frequency differences are generally performed with sequences based on

composite pulses or computer-optimized cycles. Adiabatic pulses generally offer several advantages over other approaches, including

greater single spin inversion bandwidths and tolerance to RF inhomogeneity. Here, a novel theoretical framework is presented in

order to understand how spin–spin interactions are influenced by adiabatic inversion pulses, and insights from this approach are

used to design more efficient adiabatic coherence exchange experiments. For very large frequency differences, this new approach

generally offers improved results over previously applied mixing sequences, as applied to 13C–13C experiments which are the basis of

modern sidechain assignment techniques in proteins. It is also anticipated that the approach presented here will be applicable to the

analysis of various alternative approaches to adiabatic mixing.

� 2003 Published by Elsevier Inc.
1. Introduction

Multidimensional NMR experiments involving the

exchange of coherences among spins are crucial to as-

signing resonances in complicated macromolecules [1].
The total correlation spectroscopy (TOCSY) [2] and ho-

monuclear Hartmann–Hahn (HOHAHA) experiments

[3] were introduced in order to obtain multiple relayed

cross-peaks among 1H spins. The advantage of this ap-

proach over COSY-type methods [1] is that a large

number of in-phase correlations among spins can be ob-

served in a single multidimensional experiment. The basic

technique relies upon the application of a multiple pulse
sequence to suppress chemical shift differences among

spins and allow for exchange via the J interaction. In

principle, a very strong spin lock field can accomplish this

goal [2]. However, cycles consisting of composite inver-

sion pulses are often used because they can compensate

for the presence of significant frequency offsets within the
qThe mixing sequences will be available at: http://gwagner.
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sample [4]. Provided that the RF field is strong compared

to the frequency dispersion induced by chemical shifts, the

effective two-spin Hamiltonian is reduced to just

H ¼ J~II1 �~II2 over the multiple pulse cycle. In this limit,

mixing is isotropic andmagnetization exchange is equally
efficient in all spatial dimensions. In conjunction with

other techniques, broadband homonuclear mixing has

become an important tool in assigning the chemical shifts

of 1H nuclei in macromolecules [5].

The HCCH–TOCSY experiment [6,7] and the

HCCONH–TOCSY experiment [8–10] are extended

versions of TOCSY which provide more efficient means

of obtaining sidechain assignments using 13C-labeled
proteins, and these approaches are particularly useful for

assigning randomly deuterated proteins. In HCCH–

TOCSY, the coherence is relayed from 1H spins to the

directly attached 13C nuclei and exchange occurs among

the 13C nuclei. In larger proteins, this approach has two

important advantages. First, in proteins with many res-

onances and dense spectra, the approach can be applied

as a three-dimensional (3D) experiment in which the 13C
frequency contributes an additional means of labeling the

directly attached protons and provides 13C assignments.

A second important advantage of HCCH–TOCSY
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is that the mixing step is mediated by J -couplings
among 13C spins, which are approximately 35–50Hz, i.e.,

much larger than 1H–1H couplings. The HCCONH–

TOCSY experiment is an important extension of

HCCH–TOCSY in applications to larger proteins where

HCCH–TOCSY is not applicable due to fast relaxation.

In large deuterated proteins, HCCONH–TOCSY can

take advantage of the excellent backbone resolution

which is now available using relaxation-optimized
(TROSY) experiments [11], and methyl groups can be

assigned via selective 13C-methyl group labeling and
13C–13C transfer across the otherwise deuterated side-

chain [12,13].

Although several compensated trains of composite

inversion pulses [4] have been applied to TOCSY ex-

change experiments [3,14], the ‘‘DIPSI’’ sequences have

been among the most efficient and they are frequently
employed [15,16]. The DIPSI sequences were developed

using composite pulses with cyclic permutations in order

to increase the bandwidth. For small resonance offsets,

the effective Hamiltonian is an isotropic homonuclear J
interaction. It was found that the exclusive use of 180�
phase shifts led to the greatest bandwidth, compared

with allowing 90� shifts as well [15]. Interestingly,

however, these authors also determined that the effective
Hamiltonian is somewhat less isotropic in sequences

built only with 180� phase shifts. The flip–flop spec-

troscopy (FLOPSY) sequences [17,18] provide another

approach that has a large mixing bandwidth, but

FLOPSY sequences are not necessarily isotropic [18]. In

addition, the FLOPSY approach is generally most

suitable for longitudinal mixing [18]. This class of se-

quences was developed by computer optimization of the
longitudinal mixing process, and in general the effective

spin Hamiltonian is a mixture of zero-quantum terms.

Both the FLOPSY and DIPSI sequences have been

successfully applied to the mixing part of HCCH–

TOCSY and HCCONH–TOCSY experiments and are

commonly used to obtain the sidechain assignments of

proteins.

More recently, adiabatic pulses [19–21] have been
introduced into TOCSY experiments [22]. The advan-

tages of adiabatic inversion pulses, which possess high

bandwidth and tolerance with respect to radiofrequency

(RF) inhomogeneity in the sample coil, make them at-

tractive candidates for the building blocks of mixing

pulse cycles [23]. In particular, adiabatic pulses have

already been successfully applied in the case of the rel-

atively narrow 1H bandwidth [22]. Indeed, WURST-2
has been applied to the acquisition of ‘‘clean’’ TOCSY

experiments [1], in which 1H–1H exchange due to cross-

relaxation is greatly attenuated [24], and to magic angle

spinning experiments on liquid samples in nanoprobes

[25]. The WURST class of pulses, characterized by their

wideband properties with uniform sweep rate and

smooth truncation, is a flexible form of adiabatic pulse
in which the adiabaticity of the pulse can be scaled to
different orders [26].

However, there have been relatively few demonstra-

tions of how adiabatic pulses can be applied in 13C–13C

mixing experiments. Peti et al. [27] have recently intro-

duced adiabatic sequences based on tanh/tan pulses [28]

which are efficient for 1H–1H TOCSY and can also be

applied to 13C–13C mixing. WURST sequences can also

be applied to 13C–13C mixing at 900MHz [29]. Using
computer simulations, Peti et al. also showed how the

mixing efficiency varies with the resonance offsets d1 and
d2 of two coupled spins in several adiabatic and com-

posite pulse sequences. Compared to non-adiabiatic se-

quences, the tendency for adiabatic sequences is to

exhibit better bandwidth as a function of d1 þ d2, while
they behave less well as a function of the chemical shift

difference Dd ¼ d1 � d2 between two spins with chemical
shifts dj [5,22,27].

In this paper, we develop an analytical approach to

calculating the scaling factor of the J -coupling when a

train of inversion pulses is applied. The scaling factor k
is a useful measure of mixing efficiency because ex-

change tends to occur as if the J -coupling were scaled

according to J ! kJ within the mixing bandwidth

[5,30]. According to this definition, mixing is poor as
k ! 0, while it approaches maximum efficiency as

k ! 1. Our derivation reveals that the length of the

adiabatic inversion pulse must be relatively short in

order to obtain a high value of the scaling factor k as a

function of increasing chemical shift difference Dd. The
fact that adiabatic pulses tend to be long is thus seen as a

major reason for poor performance as a function of Dd,
even when both interacting spins are efficiently inverted
over a large bandwidth. Some analytical expressions for

scaling factors have previously been introduced from the

prospective of spin lock fields [5], but here a new ap-

proach is needed in order to evaluate the case of inver-

sion pulse trains.

To develop useful sequences, we design adiabatic in-

version pulses that maximize the bandwidth and toler-

ance for RF inhomogeneity but minimize the J scaling
in accordance with practical constraints. Our approach

initially involves a combination of numerical optimiza-

tion of inversion pulses using an algorithm given by

Rosenfeld et al. [31] and testing them in simulations of

spin exchange. The shapes of optimal numerically de-

rived pulses are also used to motivate an improved an-

alytical shape, the ‘‘tan 40’’ pulse introduced below, a

particular form of constant/tan pulse [32]. The analytical
theory presented here is also extended to treat adiabatic

pulses using the linear ramp (‘‘chirp’’) pulse shape as a

model system [33,34], and the effects of supercycling and

finite pulse widths are briefly discussed. The analytical

calculations are especially important in understanding

the key factors in J scaling. In practice, in the case of

widely separated 13C resonances at high magnetic field,
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our approach is an improvement over the performance
of FLOPSY sequences, even at the relatively low RF

powers of 7–8 kHz which are routinely applied in many

laboratories.
2. Theory

An ideal sequence for mixing among spins separated

by large frequency shifts, such as 13C–13C nuclei, must

satisfy several conflicting criteria simultaneously. The

basic Hamiltonian for the J -coupled spin pair in the
presence of an RF field is the following:

HðtÞ ¼ d1Iz1 þ d2Iz2 þ J Ix1Ix2
�

þ Iy1Iy2 þ Iz1Iz2
�
þ HRFðtÞ:

ð2:1Þ

The time-dependent RF field of maximum amplitude

mRF must suppress large chemical shifts d1 and d2 in

order to recover the full J -coupling [5].

Here, we consider sequences with trains of inversion

pulses. Although an adiabatic pulse tends to offer ex-
ceptional bandwidth, the adiabaticity condition is ap-

proached only as the length of the pulse is increased.

Accordingly adiabatic pulses are generally long com-

pared to other inversion pulses delivered at the same

average RF power level. On the other hand, as shown

here, the degree to which the J -coupling is effectively

scaled down by the pulse sequence depends critically on

the interpulse spacing s. As s is made shorter, more ef-
ficient mixing is attained provided that the inversion

pulses are sufficiently adiabatic and provide satisfactory

spin inversion. Therefore, there is a conflict between

meeting the adiabatic condition and applying the pulses

at the fastest possible rate in order to avoid undesirable

scaling of the J interaction.

The approach pursued here consists of optimizing

adiabatic pulses with numerical techniques and incor-
porating them into mixing supercycles. The supercycles

applied here mostly consist of MLEV cycles [4] of P5

inversion elements [35] with XY expansions [36]. The

combination of MLEV and P5 has already been shown

to aid in mixing efficiency [22,27]. The XY permutation

eliminates undesirable double-quantum interactions

from the final effective spin Hamiltonian (see Section

2.5). The sequences used in this thesis were mostly
constructed with pulses that are rendered as short as

possible with a computational optimization procedure

and the guidance of the analytical theory introduced

here. Because of its generality and ease of implementa-

tion, we chose the optimization procedure of Rosenfeld

et al. [31] for the design of individual pulses. Their al-

gorithm was used to optimize pulses for the desired

bandwidth and a given tolerance with respect to RF field
inhomogeneity. We have been most successful with

constant amplitude adiabatic pulses, which are pursued
below, primarily because of their favorable chemical
shift scaling properties. However, various amplitude

modulation schemes can be applied with numerical

optimization.

2.1. Theory of exchange with ideal inversion pulses

In this section, an analytical approach is developed

for longitudinal mixing in a homonuclear spin pair un-
dergoing a sequence of d-function p pulses. One pulse is

applied per time period s. This problem can be solved

analytically to an excellent approximation in the limit of

weak spin–spin coupling (as is strongly obeyed here),

and it provides insight into the relationship between

interpulse spacing and the scaling of the J -coupling.
At times t ¼ ðnþ 1=2Þs, a sudden p rotation is im-

posed by the RF field. After conversion into both the
rotating and toggling frame, the internal Hamiltonian

can be written in the following form:

~HHðtÞ ¼ d1UðtÞIz1 þ d2UðtÞIz2
þ J Ix1Ix2
�

þ Iy1Iy2 þ Iz1Iz2
�
: ð2:2Þ

The function UðtÞ characterizes sudden spin flips im-

posed by the infinitely short p pulses. It equals +1 after

an even number of p pulses, )1 after an odd number

[37]. RF fields that are applied to both spins do not

directly affect the homonuclear J interaction. The tog-

gling frame Hamiltonian of Eq. (2.2) can be written as

the sum of the following two commuting terms:

~HHðtÞ ¼ ~HH 14
0 ðtÞ þ ~HH 23

0 ðtÞ; ð2:3Þ

using the definitions:

~HH 14
0 ðtÞ ¼ d1f þ d2gUðtÞ12 Iz1½ þ Iz2� þ JIz1Iz2;
~HH 23
0 ðtÞ ¼ d1f � d2gUðtÞ12 Iz1½ � Iz2� þ J Ix1Ix2

�
þ Iy1Iy2

�
:

ð2:4Þ
This partitioning of the Hamiltonian is convenient be-

cause the terms commute with each other at all times

[38].
The longitudinal component of the J interaction,

JI1zI2z, also commutes with the rest of the Hamiltonian

at all times, even in the toggling frame, and does not

participate in the dynamics at all. However, more

complicated spin dynamics occur in the 23-subspace of

the Hamiltonian [36], which can be partitioned into two

non-commuting terms ~HH23ðtÞ ¼ ~HH23
0 ðtÞ þ ~HH23

1 ðtÞ:

~HH 23ðtÞ ¼ ~HH 23
0 ðtÞ þ ~HH 23

1 ðtÞ
¼ d1f � d2gUðtÞ12 Iz1½ � Iz2� þ J Ix1Ix2

�
þ Iy1Iy2

�
;

ð2:5Þ

where

~HH 23
0 ðtÞ ¼ d1f � d2gUðtÞ12 Iz1½ � Iz2�;
~HH 23
1 ðtÞ ¼ J Ix1Ix2

�
þ Iy1Iy2

�
:

ð2:6Þ



Fig. 1. Simulation of DIPSI-3 mixing between two spins as a function

of the initial spin state. The pulses are all applied along the X-axis in

the rotating frame. The spin frequencies are separated by Dd ¼ 7 kHz

and the applied RF field is 7.7 kHz. The most important feature is the

anisotropy of the mixing efficiency, namely that signal decays along the

directions which are orthogonal to the phases of the RF pulses. In

contrast, FLOPSY and the adiabatic sequences based on inversion

pulses are most efficient along Z.
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This component of the Hamiltonian has been called the
23-subspace [38] because it characterizes dynamics be-

tween the second and third quantum states of the two-

spin system when they are expressed as eigenstates of

both Iz1 and Iz2. The Hamiltonians ~HH 23
0 ðtÞ and ~HH 23

1 ðtÞ do
not commute, so ~HH 23ðtÞ is not diagonal and it is the

portion where complex dynamics like spin exchange

occur. In contrast, ~HH 14ðtÞ is diagonal and always com-

mutes with ~HH 23ðtÞ.
The division of the Hamiltonian into ~HH23

0 ðtÞ and
~HH 23
1 ðtÞ enables the definition of a second toggling frame

in the following way:

Uðs; 0Þ ¼ U0ðs; 0Þ exp
�
� i

Z s

0

dtU�1
0 ðt; 0Þ ~HH1ðtÞU0ðt; 0Þ

�
;

ð2:7Þ
where

U0ðs; 0Þ ¼ exp

�
� i

Z s

0

dt ðd1 � d2ÞUðtÞ½Iz1 � Iz2�
�

and U0ðs; 0Þ is the time propagator.

These expressions motivate the definition of a second

interaction frame [39]:

~~HH~HH
23

1 ðtÞ ¼ U�1
0 ðt; 0Þ ~HH 23

1 ðtÞU0ðt; 0Þ: ð2:8Þ
With the further definition of the phase factor

vðtÞ ¼
Z t

0

dt0 ðd1 � d2ÞUðt0Þ ð2:9Þ

the J -coupling interaction in the second toggling frame

can be written:

~~HH~HH 1ðtÞ ¼ J cos vðtÞ Ix1Ix2
�

þ Iy1Iy2
�

þ J sin vðtÞ Iy1Ix2
�

� Ix1Iy2
�
: ð2:10Þ

After each pair of p pulses, the second term in Eq. (2.10)

vanishes because the first pulse flips the sign of the

second zero-quantum operator ½Iy1Ix2 � Ix1Iy2�. The ex-

plicit form of Eq. (2.9) for the d-function p pulse is

substituted into Eq. (2.10) and integrated to obtain the

zero-order term in the Magnus expansion, i.e., the
Average Hamiltonian approximation [40]:

~~HH~HH
ð0Þ
1 ¼ 1

s

Z s

0

dt ~~HH~HH 1ðtÞ

¼ J
1

s

Z s

0

dt cos vðtÞ
� �

Ix1Ix2
�

þ Iy1Iy2
�
: ð2:11Þ

Because the J term is small, and the chemical shift terms

are cyclic at times t ¼ ns in the sense that vðnsÞ ¼ 0, so

that U0ðns; 0Þ ¼ �1. Accordingly, the average Hamil-

tonian approximation can be used to approximate the

total effective J -coupling as follows:

~~HH~HH
ð0Þ
1 ¼ JIz1Iz2 þ J

2

Dds
sin

Dds
2

� �� �
Ix1Ix2
�

þ Iy1Iy2
�
;

ð2:12Þ
where s is the delay between the p pulses and
Dd ¼ d1 � d2. Since the term JIz1Iz2 commuted with the

rest of the Hamiltonian at all times in the toggling frame,

it can be restored here. The longitudinal term is not

scaled by the p pulses, and in the most general case Eq.

(2.12) is not isotropic. Within the model of d-function p
pulses given here, the analytical expression for the scaled

J-coupling is quantitatively accurate in the limit of small

J compared to the RF field. This condition is strongly
obeyed in high resolution solution experiments.

The full J interaction is recovered if and only if

Dds � 1. This places an upper bound on the length of

the p pulse. Otherwise, if the rate of pulsing is not rapid

compared to the chemical shift difference between the

spins, there is extensive scaling of the zero-quantum

term in Eq. (2.12), which is defined by

Ix1Ix2
�

þ Iy1Iy2
�
¼ 1=2 Iþ1I�2f þ I�1Iþ2g: ð2:13Þ

When not excessively scaled, this term can be used to
generate longitudinal mixing. In the limit of small

Dd ¼ d1 � d2, the coupling becomes isotropic. However,

under realistic experimental conditions we will expect

significant chemical shift scaling of the zero-quantum

terms, while the Iz1Iz2 term is relatively unaffected.

When isotropic symmetry is broken in this fashion,

the best option conceptually is longitudinal mixing.

Likewise, in the limit of large resonance offsets, ex-
change efficiencies are highly unequal along different

dimensions in DIPSI experiments, even though the

Hamiltonian is isotropic in the limit of small spin fre-

quencies. As resonance offsets increase, Fig. 1 illustrates

simulations which show that DIPSI-3 is most suitable

for in-phase transverse coherence exchange, while out-

of-phase transverse mixing performs poorly, as one ex-

ample of anisotropic behavior. The FLOPSY approach
operates best in the setting of longitudinal mixing [17].
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In a general way, it seems likely that relaxation effects
may favor longitudinal mixing over in-phase transverse

mixing. However, a highly robust mixing approach

which offers equivalent in-phase and out-of-phase

transverse mixing could be the best approach because of

the advantage of sensitivity enhancement [1]. In this

article, adiabatic exchange experiments are shown only

for the case of longitudinal mixing, but transverse mix-

ing with sensitivity enhancement may be possible with
improved sequences at relatively high RF powers.
Fig. 3. Comparisons of the scaling factor of the J -coupling given by the

analytical theory and contrasted with simulations. In part (a), the

behavior of the numerical pulse in Fig. 2 is examined. A train of d-
function pulses (long dashes) is seen to yield much less efficiency at the

same rate of pulsing, i.e., one p pulse applied every 151ls. The dots

illustrate the scaling factor recovered from exact simulations of the

spin pair. Numerical integration of Eq. (2.29), shown as a solid line,

and a simple model of scaled chemical shifts, according to

Ddeff ! 0:55 � Dd, (short dashes) yield excellent agreement with the

exact calculation. Exact data is not shown beyond Dd ¼ 8 kHz because

the numerically derived adiabatic pulse was not designed to operate

there. Similar results are seen from the linear ramp pulse in part (b),

with the difference that in this case there is an analytical expression for

the chemical shift scaling factor, given by Eq. (2.34), which yields
2.2. Theory of exchange with adiabatic pulses

Fig. 2 illustrates two adiabatic frequency sweeps ap-

plied in our experiments. The first is a numerically de-

rived pulse, the second a linear ramp ‘‘chirp’’ pulse [33].

These pulses are suitable for mixing at 500MHz mag-
netic field. Fig. 3 compares the scaling factor of the J-

interaction as a function of the chemical shift difference

Dd ¼ d1 � d2 between the spins for the two waveforms.

Fig. 3 compares the performance of the d-function p
pulse approximation developed in Section 2.1 with exact

calculations of the scaling factor k for the numerical and

linear adiabatic pulses at the same pulsing rate. The

plots illustrate that the d-function p pulse approxima-
tion is qualitatively correct, but it overestimates how

much the coupling is scaled down. The main reason is

that the continuous application of RF power acts to

reduce the effective chemical shift difference. Here we

modify the p pulse treatment to correct the scaling fac-

tor for the effect of finite pulse length. Curves for the

approach presented in this section, also shown in Fig. 3,

illustrate that this approach can make quantitative
predictions over a large bandwidth.
Fig. 2. Adiabatic pulse envelopes designed initially for use at 500MHz.

The numerical algorithm of Rosenfeld and co-workers discussed in the

text was applied to design the frequency sweep, shown as a solid line. A

similar linear ramp pulse which was optimized by computer simula-

tions of mixing for field strengths at 500MHz is also shown, and it is

only moderately less efficient than the numerically derived pulse in

simulations. For these pulses, the intended RF amplitude is 7.7 kHz to

cover a 7 kHz bandwidth.

a ¼ 0:62. Beyond Dd ¼ 10 kHz a single exchange frequency is not well

defined in the exact two spin calculations.
Our analytical model assumes ideal adiabaticity. The
Hamiltonian describing the interaction of the adiabatic

pulse with the homonuclear spin pair is the following:

HðtÞ ¼ fdðtÞ þ d1gIz1 þ mRFðtÞIx1 þ fdðtÞ þ d2gIz2
þ mRFðtÞIx2 þ J Ix1Ix2

�
þ Iy1Iy2 þ Iz1Iz2

�
; ð2:14Þ

where dðtÞ and mRFðtÞ describe the adiabatic sweep.

It is convenient to apply a time-dependent transfor-

mation of the angular momentum operators in order to

restate the Hamiltonian as follows:

HðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdðtÞ þ d1Þ2 þ m2RFðtÞ

q
ÎIz1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdðtÞ þ d2Þ2 þ m2RFðtÞ

q
ÎIz1

þ J Ix1Ix2
�

þ Iy1Iy2 þ Iz1Iz2
�
; ð2:15Þ

where

ÎIzjðtÞ ¼ Izj cos hjðtÞ þ Ixj sin hjðtÞ: ð2:16Þ
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For convenience we also define the phase angles

cos hjðtÞ ¼
dðtÞ þ djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdðtÞ þ djÞ2 þ m2RFðtÞ
q ;

sin hjðtÞ ¼
mRFðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdðtÞ þ djÞ þ m2RFðtÞ
p :

ð2:17Þ

It is also helpful to define analogous transformations

where dj ¼ 0. These are denoted by
^̂IÎII zjðtÞ ¼ Izj cos hðtÞþ

Ixj sin hðtÞ and the following analogues

cos hðtÞ ¼ dðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðtÞ þ m2RFðtÞ

q ;

sin hðtÞ ¼ mRFðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðtÞ þ m2RFðtÞ

q :

ð2:18Þ

The related transformations along other directions are

given by
^̂IÎIIxjðtÞ ¼ Ixj cos hðtÞ � Izj sin hðtÞ and

^̂IÎIIyjðtÞ ¼ Iyj.
For simplicity, the time-dependence of these tilted axis

systems is not written explicitly in most cases.
We specialize to the case of relatively small resonance

offsets which obey the condition dj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðtÞ þ m2RFðtÞ

q
.

This constraint applies to our experiments, and indeed if
it is violated, poor scaling factors are likely to result. For

relatively small resonance offsets, the following ap-

proximation can be applied via series expansion of the

square root (through first order):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdðtÞ þ djÞ2 þ m2RFðtÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðtÞ þ m2RFðtÞ

q
þ dðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2ðtÞ þ m2RFðtÞ
q dj: ð2:19Þ

Likewise, when the chemical shifts dj are small, the tilted

axis systems (ÎIxj; ÎIyj; ÎIzj) are similar for both spins j ¼ 1; 2
and approximately equivalent to the common rotation

system (^̂IÎIIxj;
^̂IÎIIyj;

^̂IÎIIzj). With these approximations, the

Hamiltonian then becomes:

HðtÞ �
X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðtÞ þ m2RFðtÞ

q8><
>: þ dðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2ðtÞ þ m2RFðtÞ
q dj

9>=
>;^̂IÎIIzj

þ J~II1 �~II2: ð2:20Þ
More rigorously, the Hamiltonian given by Eq. (2.14)

can be rewritten exactly in terms of the common axis

system (
^̂IÎIIxj;

^̂IÎIIyj;
^̂IÎIIzj), which contributes additional rota-

tions involving the tilted X-axis:

HðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðtÞ þ m2RFðtÞ

q
^̂IÎIIz1
n

þ ^̂IÎIIz2
o

þ
X
j

cos hðtÞdj ^̂IÎIIzj

�
X
j

sin hðtÞdj ^̂IÎIIxj þ J~II1 �~II2: ð2:21Þ

The first term is just the Hamiltonian of the RF field,

and under adiabatic conditions the path of the angular
momentum operators
^̂IÎII zj is identical to the trajectory of

Zeeman magnetization under the influence of the pulse:

URFIzjU�1
RF ¼ ^̂IÎIIzj: ð2:22Þ

With the definition

HRFðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðtÞ þ m2RFðtÞ

q
f^̂IÎIIz1ðtÞ þ ^̂IÎIIz2ðtÞg;

adiabaticity yields:

U�1
RF

^̂IÎIIzjURF ¼ Izj: ð2:23Þ
On the other hand, the terms involving ^̂IÎIIxj contribute

much less than the
^̂IÎIIzj terms because they do not commute

with the RF field. The behavior of the
^̂IÎIIxj terms under RF

modulation is complex because the mutual spin axis sys-

tem (
^̂IÎIIxj;

^̂IÎIIyj;
^̂IÎIIzj) is undergoing rotation. This system has

been defined such that ^̂IÎII zjðtÞ is the path of the RF field in

the rotating frame. This path is the same as the rotation of

longitudinal coherence under adiabatic conditions, and

its rate of change is by definition slow compared to the

frequency of precession induced by the effective RF field

vector.

Therefore, on a time scale that is short compared to

the length of the adiabatic pulse, we can omit the Dyson
time-ordering operator T from the propagator for the

RF pulses,

URFðt; 0Þ ¼ T exp

�
� i

Z t

0

dt0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðt0Þ þ m2RFðt0Þ

q


� ^̂IÎIIz1ðt0Þ
�

þ ^̂IÎII z2ðt0Þ
��

and write

U�1
RF

^̂IÎIIxjURF ¼ ^̂IÎIIxj cos
Z t

0

dt0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðt0Þ þ m2RFðt0Þ

q� �

þ ^̂IÎIIyj sin
Z t

0

dt0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðt0Þ þ m2RFðt0Þ

q� �
: ð2:24Þ

With sufficient separation of time scales between the rate
of tilt in the adiabatic trajectory and the precession pe-

riod, this approximate result indicates that the ^̂IÎIIxj terms

are greatly scaled down in the toggling frame to Ofdj=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðtÞ þ m2RFðtÞ

q
g. Interestingly, although this separation

of time scales is not always strongly obeyed by the se-

quences discussed in this paper, it is nonetheless the case

that this term contributes little to the calculated scaling

factor over most of the bandwidth. With the above re-

sults in mind, the complete propagator can be approx-

imated in the toggling frame as follows:

U ¼ URF exp

(
� i

Z s

0

dt
X
j

cos hðtÞdjU�1
RF

^̂IÎIIzjURF

"

þ
X
j

sin hðtÞdjU�1
RF

^̂IÎIIxjURF þ J~II1 �~II2

#)
:

ð2:25Þ
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The J -coupling is not directly affected by identical si-
multaneous rotations of both homonuclear spins. With

the assumption of adiabaticity, the propagator simplifies

to an expression that is analogous to Eq. (2.2):

U ¼ URF exp

(
� I

Z s

0

dt
X
j

cos hðtÞdjIzj þ J~II1 �~II2

)
:

ð2:26Þ
Again within the toggling frame, the effective spin Ham-

iltonian has the simplified form: ~HHðtÞ ¼ cos hðtÞ d1Iz1þ
cos hðtÞd2Iz2 þ~II1 �~II2. Although the adiabatic trajectory is

more complex than that of an ideal p pulse, the compo-
nents of Eq. (2.26) obey the same commutation relation-

ships seen in Eq. (2.2) and can be treated in a similar

fashion.

We define a phase factor involving modulation of the

flip–flop component of the J -coupling:

vðtÞ ¼
Z t

0

dt0 ðd1 � d2Þ
dðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2ðtÞ þ m2RFðtÞ
q : ð2:27Þ

With this definition, the scaling factor can be defined as

follows:

~~HH~HH
ð0Þ
1 ¼ JIz1Iz2 þ kJ Ix1Ix2

�
þ Iy1Iy2

�
; ð2:28Þ

where:

k ¼ 1

s

Z s

0

dt cos
Z t

0

dt0ðd1

8><
>: � d2Þ

dðt0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðt0Þ þ m2RFðt0Þ

q
9>=
>;:

ð2:29Þ
The length of the adiabatic pulse is given by s. In most
cases, this integral cannot be solved analytically. How-

ever, Eq. (2.29) is easy to calculate numerically. An

approximate solution for chirp pulses is provided in

Section 2.4. In Fig. 3, it is clear that the approximation

expressed by Eqs. (2.28) and (2.29) is excellent for the

two example waveforms.

More generally, Eq. (2.29) is important because it

demonstrates a key determinant of the scaling factor. In
Section 1, we saw that one important factor is how short

the pulse can be made compared to the resonance offsets

dj of the spins. We see here that it is also advantageous

to apply the adiabatic trajectory in such a way as to

maximize the scaling of chemical shifts according

to dj ! cos hðtÞdj. These considerations imply it is best

to minimize the breadth of the frequency sweep in order

to achieve favorable scaling properties. In the case of a
linear ramp of the form dðtÞ ¼ dmax � kt, for example,

chemical shift scaling increases as dmax is reduced, and

consequently the scaling factor k increases.

2.3. Numerical adiabatic pulse optimization

Motivated by the result of Eq. (2.12), we sought a

flexible algorithm for developing relatively short adia-
batic pulses and testing them for mixing applications.
We chose the algorithm of Rosenfeld et al. [31], which

optimizes the timing of an adiabatic inversion pulse

within a semi-elliptical trajectory. This method and

similar ones [41] have been frequently applied to the

development of adiabatic pulses for imaging applica-

tions. For RF fields applied along the X-axis in the ro-

tating frame, the trajectory in the XZ-plane is set by the

user [31]. In particular, the user defines the functions
f fgðtÞg and gfgðtÞg that define the trajectory of the

pulse within the XZ-plane of the rotating frame:

HRFðtÞ ¼ f gðtÞf gIz þ g gðtÞf gIx: ð2:30Þ

The Iz term defines the frequency sweep of the pulse, while

the transverse term Ix defines an envelope of amplitude

modulation. For inversion pulses, arbitrary phase mod-

ulation can be redefined as frequencymodulation without

loss of generality, so no Iy term is needed. The boundary

conditions of Eq. (2.29) are jf f�p=2gj � jgf�p=2gj,
f f�p=2g > 0, and f fp=2g < 0. These are implicitly de-
fined by the user, and they constrain the sweep to begin at

a large positive frequency and rotate the effective RF field

in the rotating frame across the transverse plane into a

large negative frequency. This trajectory accomplishes

spin inversion if performed adiabatically. Specific inputs

therefore include themaximumRFfield amplitude mRF, as

well as the initial and final frequencies of the sweep (dmin

and dmax ¼ �dmin). The total sweep width is therefore
2dmax. The user also enters a desired range of offset andRF

inhomogeneity compensation. The method of Rosenfeld

et al. applied here calculates the pulse timing trajectory

gðtÞ by maximizing the adiabaticity parameter:

QðtÞ ¼ f 2 gðtÞf g þ g2 gðtÞf gð Þ3=2

f gðtÞf g _gg gðtÞf g � g gðtÞf g _ff gðtÞf g
��� ��� : ð2:31Þ

with a minimum allowed value such that QðtÞP c at all

times. As the user-defined variable c is made shorter, the

pulse shape does not change, but its profile is stretched

into a shorter pulse length s and the adiabaticity con-
dition is increasingly less well satisfied.

In practice, the desired goals for offset and RF inho-

mogeneity compensation are determined by the size of the

magnetic field, the probe, and the spectroscopic applica-

tion (e.g., 13C NMR on proteins). The maximum peak

andaverageRFfield amplitudes are primarily determined

by sample heating restrictions, as well as probe technol-

ogy. In constructing a numerical pulse, the user sets the
path of the adiabatic inversion trajectory in the rotating

frame. The length of the pulse s is made as short as is

consistent with adequate inversion performance over the

desired bandwidth. For the mixing application discussed

here, adequate performance is ultimately judged by how

well supercycles of the numerical inversionpulses perform

in numerical calculations of magnetization exchange
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over the desirable bandwidth. In other words, adequate
performance of an adiabatic pulse for single spin inver-

sion is a necessary, but not sufficient, condition for good

mixing performance.

In computations of 13C–13C exchange at high mag-

netic field, this paper pursues the case of pulses with

constant RF amplitude. Although an ideal adiabatic

inversion trajectory can only be obtained with an infi-

nite frequency sweep when the amplitude is constant,
constant-amplitude inversion pulses can perform well in

mixing experiments even if this constraint is not

strongly obeyed. With numerical optimization, the fre-

quency sweep of a constant amplitude adiabatic inver-

sion pulse is similar to a linear frequency ramp during

the middle portion of the pulse. The departure from

linearity at the extremes of the pulse is, however, often

helpful in maximizing mixing efficiency. Fig. 2 illus-
trates two pulse envelopes used in some of our 13C–13C

exchange experiments at 500MHz. The frequency

sweep shown in dashes is a linear ramp. The numeri-

cally derived pulse, calculated based on constant adi-

abaticity, is also primarily linear, although with a

different slope.

As implied by Eq. (2.29), the scaling factor of the J
interaction is maximized when the extent of the frequency
sweep is limited. This point is made more clear by the

specific case of the linear frequency ramp given below.

The numerical algorithm guarantees that minimum adi-

abaticity is achieved at all time points over the whole

range of resonance offsets. With a limited frequency

sweep, there is always some frequency dj 2 ½dmin; dmax�
such that dðtÞ � dj ¼ 0 overmuch of themiddle portion of

the pulse. The adiabaticity condition is the same at all
points over this range,QðtÞ ¼ m2RF=

_ddðtÞP c, which yields a
linear frequency sweep, given the imposed constraint of

minimum constant adiabaticity. Accordingly, a linear

frequency sweep is an excellent model for these numeri-

cally derived pulses and indeed linear ramps can perform

well experimentally.

2.4. Scaling of the homonuclear J interaction with linear

frequency ramps

It is interesting to see how the scaling factor given by

Eq. (2.29) behaves in a specific example. Linear fre-

quency ramps are not only a good model for pulses

based on constant adiabaticity, but the integral in Eq.

(2.29) is amenable to an approximate solution for rela-

tively small resonance offsets dj. Here we consider a
linear ramp of total width 2dmax with a frequency ramp

dðtÞ ¼ dmax � kt and constant RF amplitude mRF. To

make the solution most instructive, we assume that the

net effect of the trajectory can be approximated by a

single scaling factor a of the chemical shift difference Dd.
This approach will yield a scaling factor analogous to

Eq. (2.12) where Ddeff ¼ a � Dd:
k ¼ 2

Ddeffs
sin

Ddeffs
2

: ð2:32Þ

With the definitions

vðtÞ ¼ Dd
Z t

0

dt0
dðt0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2ðt0Þ þ m2RFðt0Þ
q ;

hðtÞ ¼ Dd � at, and Dd ¼ d1 � d2, the cosine term in Eq.
(2.29) can be factored as follows:

cos vðtÞf g ¼ cos Dd � atf þ ðvðtÞ � Dd � atÞg
¼ cos Dd � atf g cos vðtÞf � Dd � atg
� sin Dd � atf g sin vðtÞf � Dd � atg

� cos Dd � atf g � vðtÞf � Dd � atg sin Dd � atf g
� cos Dd � atf g � vðtÞf � Dd � atg � Dd � atf g:

ð2:33Þ

This approximation holds throughOfvðtÞ � Dd � atg. The
best analytical solution of the form of the first term in-

volves selection of a such that the second term in Eq. (2.33)

is zero. A value that is independent of Dd is obtained only

for small Dd such that Dd � as=2 is in a small angle. This

condition is obeyed sufficiently in the cases considered in

this paper. The solution to the problem of optimizing a is
straightforward and yields the expression:

a ¼ 1

 8<
: þ m2RF

d2max

!3=2

� m3RF

d3max

9=
;

� 3m2RF

2d2max

ln
dmax

mRF

8<
: þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2max

m2RF

s 9=
;: ð2:34Þ

Eq. (2.34) predicts that the parameter a is 0.62 for the

linear ramp pulse shown in Fig. 1. In Fig. 3b, it is seen

that this simple model of chemical shift scaling accord-

ing to Dd ! a � Dd accounts quantitatively for the scal-

ing factor of a chirp pulse. Further details of the

derivation Eq. (2.34) are provided in Appendix A.1. For
the similarly shaped numerically derived pulse shown in

Fig. 1, the best value of a is 0.55 by empirical fitting to

the results from the calculated k at small Dd, as given by

Eq. (2.29), and Fig. 3a also demonstrates the suitability

of the scaled chemical shift model in the case of nu-

merically derived pulses.

An alternative expression can also be derived without

assuming small Dd by employing an approximation in
which the phase function vðtÞ is presumed linear, i.e.,

a � Dds=2 ¼ vðs=2Þ, leading to the approximate scaling

factor:

a ¼ 1

 8<
: þ m2RF

d2max

!1=2

� mRF

dmax

����
����
9=
;: ð2:35Þ

The slope is taken from the center of the trajectory

where t ¼ s=2, which leads to a simpler expression for a



Fig. 4. Chemical shift scaling factors as approximated by the expres-

sions in Eqs. (2.34) and (2.35). The latter offers a more intuitive for-

mulation, but is less accurate. The curves show that a � 0:5 in the

neighborhood dmax � mRF Optimal constant-amplitude sequences have

been designed in this study with moderately higher values of dmax,

where the pulse is more truly adiabatic.

Fig. 5. Vector model of the adiabatic trajectory undertaken by a spin

which is influenced by an RF field that is not completely co-parallel

initially. In the ideal case, the initial condition of the effective RF field

vector in the rotating frame is exactly along the +Z-axis, where the

spin polarization begins using an inversion pulse in the setting of

longitudinal mixing. However, to make the pulses faster, they begin

with a small tilt away from the +Z-axis in this study. The component

of spin polarization which is not initially parallel to the effective RF

field vector then precesses about the RF field as it is itself changing

direction on a much slower time scale. The spin polarization ends up

closest to )Z if the net precession angle about the tilting RF field is an

odd multiple of p over the total pulse length s.
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than Eq. (2.34) but an underestimate of the degree of

chemical shift scaling by about 20%. Fig. 4 shows how

the scaling factor a behaves as a function of dmax=mRF via

Eqs. (2.34) and (2.35).

Interestingly, although an excellent adiabatic inver-

sion pulse with large dmax=mRF may have a correspond-

ingly large bandwidth, Fig. 4 illustrates that there is little

chemical shift scaling under these conditions. Accord-
ingly, a poor k is obtained in this limit. Interestingly, the

chemical shifts are scaled by 0.5 when dmax � mRF. The

pulse, however, is unlikely to obey the adiabaticity

constraint or yield broadbanded inversion unless

dmax � mRF. In practice, a compromise exists in selecting

the optimal dmax since k becomes larger as dmax ! mRF,

while the bandwidth increases with increasing dmax and,

in general, the pulse length s. Although the specific ex-
ample of a chirp pulse is discussed here, this behavior is

fairly general for adiabatic pulses. As mRF decreases or

dmax increases, the scaling properties are likely to de-

grade. A corollary is that exchange slows down in

principle as the RF field decreases, and therefore RF

field inhomogeneity is expected to degrade the perfor-

mance of adiabatic sequences to some extent even when

each spin is still being perfectly inverted. Of course, the
recovered J interaction also decreases at low RF fields in

a similar way using composite pulse approaches [5].

2.5. Constraints on the pulse length with finite frequency

sweeps

With a finite frequency sweep, the RF field vector

does not begin strictly parallel to the longitudinal co-
herence to be inverted. Consequently, there is a signifi-

cant component that precesses about the tilting RF field

instead of following it in an adiabatic fashion. Fig. 5

illustrates this behavior. The goal of best inversion is

accomplished when the component of magnetization

that is not locked along the RF field precesses about an

angle np, where n is odd. At angles np with n even, the
worst inversion properties are expected. This behavior

can be appreciated by considering the geometry in Fig. 5.

The magnetization begins initially along the Z-axis, and

the RF field vector begins at some small angle away

from it. Following an adiabatic trajectory, the magne-

tization precesses around the RF field as it moves from

near alignment along +Z to )Z. The magnetization
finishes closest to the )Z-axis when there is net p rota-

tion about the RF field axis. This type of ‘‘ripple’’ be-

havior, i.e., oscillating inversion efficiency with respect

to increasing pulse length, is a general feature of semi-

adiabatic pulses [42] and is particularly prominent with

constant amplitude pulses [21].

In order to ascertain which pulse lengths optimize the

inversion efficiency in a finite frequency sweep, the total
angle of precession can be computed analytically for the

case of a linear ramp pulse:

X¼
Z s

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðtÞ þ m2RF

q

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2max þ m2RF

q8<
: þ m2RF

dmax

ln
dmax

mRF

2
4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2max

m2RF

s 3
5
9=
; � s:

ð2:36Þ

The pulse length s is then constrained to be roughly such

that X is an odd multiple of p. Unfortunately, the adi-

abaticity criterion is generally violated when X ¼ p for

the pulses studied here, and consequently we find that

both linear ramp pulses and numerically optimized
pulses work best in our study in the neighborhood of

X � 3p. For instance, in the example discussed above

and illustrated in Fig. 2, i.e., a 22 kHz sweep at 7.7 kHz

RF field, the optimal pulse via Eq. (2.36) is 153 ls.



Fig. 6. Pulse length constraints on efficient mixing between two spins.

For the system discussed here, the region where the adiabatic pulse

length is about 135–160ls yields maximal exchange because the net

precession angle of the spin polarizations is about 3p. Although the

interval is fairly broad, mixing not only slows down, but also fails

altogether, outside this region. This calculation applies to two spins

separated by Dd ¼ 7:0 kHz with an applied RF field of 7.7 kHz. The

scaling factor k is seen to decrease as the pulse length is increased. This

behavior corresponds to the reduction in the scaling factor seen with

lower pulsing rates.
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In fact, a mixing bandwidth of at least 7 kHz is obtained

even when the pulse length is as short as 135 ls, so this
timing constraint is not very restrictive in practice. Fig. 6

illustrates the maximum cross-peak obtained in an exact

two spin calculation when Dd ¼ 7 kHz. It shows a broad

interval from 135 to 160 ls where the pulse length is

acceptable. The figure also illustrates that the scaling

factor k falls as the pulse length increases, so it is helpful

to keep the pulse as short as possible. On the other hand,

a longer pulse yields better tolerance to RF inhomoge-
neity because in that case the sequence continues to

perform efficiently at lower RF powers than the nominal

value. This behavior occurs because a longer s is needed
to make X � 3p as mRF is reduced. Similar consider-

ations apply to numerically optimized pulses derived

from finite frequency sweeps.

The constraints on the pulse length result from the

limited extent of the sweep using constant RF power.
This may be a disadvantage of constant amplitude

pulses under some conditions. However, the use of RF

amplitude envelopes at the edges of the pulse, as gen-

erally applied in adiabatic pulses, generally reduces the

scaling factor k as derived in Section 2.2. For the ap-

plications of interest here, the time restrictions have

proven reasonable.
2.6. Further treatment of finite pulse effects

The transverse terms in Eq. (2.24) lead to small ad-

ditional rotations of the coupling. These could degrade

mixing performance and must be removed by some su-

percycling approach. The MLEV [4] and other super-

cycling approaches [35] are highly efficient in both

composite pulse and adiabatic decoupling [43], as well as
mixing. In a general way, the error terms contribute to
the toggling frame Hamiltonian as follows:

~HH0ðtÞ ¼ d1 cos hðtÞIz1
n

þ �aaðtÞIx1 þ �bbðtÞIy1 þ �ccðtÞIz1
o

þ d2 cos hðtÞIz2
n

þ �aaðtÞIx2 þ �bbðtÞIy2 þ �ccðtÞIz2
o

þ J~II1 �~II2; ð2:37Þ

where the vector �aaðtÞ; �bbðtÞ; �ccðtÞ
� �

defines a small error
rotation. Without loss of generality, the �ccðtÞIzj term is

included in the predominant rotations defined by

dj cos hðtÞIzj. In particular, the phase factor vðtÞ of Eq.

(2.27) can be redefined to include this term:

v0ðtÞ ¼
Z t

0

dt0 d1ð � d2Þ cos hðt0Þ þ
Z t

0

dt0 �cc1ðt0Þ
n

� �cc2ðt0Þ
o
:

ð2:38Þ

Supercycling eliminates the single spin contributions to

the Hamiltonian in the context of a train of inversion
pulses [4,35,36], and this problem is not considered

further here. Instead, the impact of the error rotations

on the form of the coupling is pursued further. To ex-

amine the effect of the errors through first order, it is

helpful to define the phase accumulated by each of the

error rotations:

aðtÞ ¼
Z t

0

dt0 �aaðt0Þ;

bðtÞ ¼
Z t

0

dt0 �bbðt0Þ;

cðtÞ ¼
Z t

0

dt0 �ccðt0Þ:

ð2:39Þ

Toggling frames can be defined in terms of these

phase factors. Approximations for the effects of the ro-

tations are included through linear order in the phase

factors:

Ixj � Ixj cos bjðtÞ � Izj sin bjðtÞ;
Iyj � Iyj cos ajðtÞ þ Izj sin ajðtÞ;
Izj � Ixj sin bjðtÞ � Iyj sin ajðtÞ cos bjðtÞ

þ Izj cos ajðtÞ cos bjðtÞ:

ð2:40Þ

These approximations involve sequential transforma-

tions about each angle, i.e., the first order Baker�s–
Hausforf–Campbell expansion [44], which preserves the

unitarity of rotations.

In the second toggling frame [39], the error rotations

contribute single-, zero-, and double-quantum terms to

the J -coupling Hamiltonian [15]. The Hamiltonian can

be expressed in the second toggling frame via a primary
rotation about vðtÞ, as described by Eqs. (2.8)–(2.10),

followed by the transformations described by Eq. (2.38).

The overall coupling Hamiltonian in the second toggling

frame can be then written as follows:
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~~HH~HH 1ðtÞ ¼ J cos v0ðtÞ cos b1ðtÞ cos b2ðtÞ
þ sin b1ðtÞ sin b2ðtÞ

�
Ix1Ix2

þ J
�
� sin v0ðtÞ cos b1ðtÞ cos a2ðtÞ

� sin b1ðtÞ sin a2ðtÞ cos b2ðtÞ
�
Ix1Iy2

þ J
�
� cos v0ðtÞ cos b1ðtÞ sin b2ðtÞ

� sin v0ðtÞ cos b1ðtÞ sin a2ðtÞ
þ sin b1ðtÞ cos a2ðtÞ cos b2ðtÞ

�
Ix1Iz2

þ J sin v0ðtÞ cos a1ðtÞ cos b2ðtÞ
�

� sin a1ðtÞ cos b1ðtÞ sin b2ðtÞ
�
Iy1Ix2

þ J cos v0ðtÞ cos a1ðtÞ cos a2ðtÞ
�

þ sin a1ðtÞ cos b1ðtÞ sin a2ðtÞ cos b2ðtÞ
�
Iy1Iy2

þ J cos v0ðtÞ cos a1ðtÞ sin a2ðtÞ
�

� sin v0ðtÞ cos a1ðtÞ sin b2ðtÞ
� sin a1ðtÞ cos b1ðtÞ cos a2ðtÞ cos b2ðtÞ

�
Iy1Iz2

þ J
�
� cos v0ðtÞ sin b1ðtÞ cos b2ðtÞ sin v0ðtÞ

� sin a1ðtÞ cos b2ðtÞ
þ cos a1ðtÞ cos b1ðtÞ cos b2ðtÞ

�
Iz1Ix2

þ J cos v0ðtÞ sin a1ðtÞ cos a2ðtÞ
�

þ sin v0ðtÞ sin b1ðtÞ cos a2ðtÞ
� cos a1ðtÞ cos b1ðtÞ sin a2ðtÞ cos b2ðtÞ

�
Iz1Iy2

þ J
�
þ cos v0ðtÞ sin b1ðtÞ sin b2ðtÞ½

þ sin a1ðtÞ sin a2ðtÞ�
þ sin v0ðtÞ sin b1ðtÞ cos a2ðtÞ½
� cos a1ðtÞ sin b2ðtÞ�
þ cos a1ðtÞ cos b1ðtÞ cos a2ðtÞ cos b2ðtÞ

�
Iz1Iz2:

ð2:41Þ

Fortunately, most of these terms vanish during the
sequence when supercycling is applied. The net rotation

due to an adiabatic inversion pulse of phase X is the

following in the most general case:

URF ¼ exp
�
� ip ðIx1

�
þ Ix2Þ cos eþ ðIy1 þ Iy2Þ sin e

��
� exp f � iuðIz1 þ Iz2Þg: ð2:42Þ

This expression follows from the assumption of inver-

sion of longitudinal coherences: Izj ! �Izj, which in turn

results from the definition of an adiabatic inversion
pulse. However, the net rotation imposed by the pulses

applied here is very close to that of a typical p pulse:

URF ¼ exp f � ipðIx1 þ Ix2Þg: ð2:43Þ

As discussed in Section 2.5, the net precession angle

about the adiabatic trajectory is 3p for the pulses dis-

cussed here, and as a result the overall rotations yield

X ! X ; Y ! �Y ; Z ! �Z, as summarized by Eq. (2.43).

For simplicity the main features of supercycling are
discussed in the context of pulses which approximately
obey Eq. (2.43).

Pairs of inversion pulses with the same phase, i.e.,

XX, cancel out bilinear terms of the form IxiIyj and IxiIzj.
An example is given here

exp f � ip Ix1ð þ Ix2Þg exp f � icIx1Iz2g
� exp f � ip Ix1ð þ Ix2Þg exp f � icIx1Iz2g

¼ exp f � i2p Ix1ð þ Ix2Þg
� exp � f þ icIx1Iz2g exp f � icIx1Iz2g

� exp f � i2p Ix1ð þ Ix2Þg; ð2:44Þ

where c is the amplitude of the bilinear term and is as-
sumed to be small in order to recombine the rotations.

Phase inversion, i.e., X �XX , is used in order to cancel terms

of the form IyiIzj. In this case, application of an inverse

phase pulse reverses the sign of the coefficient c ! �c,
while the inversion of the X pulse does not affect the

bilinear term directly

exp f þ ip Ix1ð þ Ix2Þg exp
�
� ið � cÞIy1Iz2

�
� exp f � ip Ix1ð þ Ix2Þg exp

�
� icIy1Iz2

�
¼ exp f � icIx1Iz2g exp f � icIx1Iz2g � 1; ð2:45Þ

Terms of the form IxiIzj are eliminated by either XX or

X �XX .

With elimination of all off-diagonal terms, the

Hamiltonian simplifies to the form:

~~HH~HH 1ðtÞ ¼ J cos v0ðtÞ cos b1ðtÞ cos b2ðtÞ
�

þ sin b1ðtÞ sin b2ðtÞ
�
Ix1Ix2

þ J cos v0ðtÞ cos a1ðtÞ cos a2ðtÞ
�

þ sin a1ðtÞ cos b1ðtÞ sin a2ðtÞ cos b2ðtÞ
�
Iy1Iy2

þ J cos a1ðtÞ cos a2ðtÞ cos b1ðtÞ cos b2ðtÞ
�

þ cos v0ðtÞ sin b1ðtÞ sin b2ðtÞ½ þ sin a1ðtÞ sin a2ðtÞ�
þ sin v0ðtÞ sin b1ðtÞ sin a2ðtÞ½
� sin a1ðtÞ sin b2ðtÞ�

�
Iz1Iz2: ð2:46Þ

To some degree, the error terms seen in Eq. (2.46) re-

duce the attenuation of the terms involving transverse

spin operators at large chemical shift differences. Fig. 3

illustrates this effect by comparison exact spin calcula-

tions with the approximations given by Eqs. (2.27)–

(2.29). Via the error rotations there is also some scaling

of the Iz1Iz2 term.

The Hamiltonian of Eq. (2.44) is a linear combination
of Ix1Ix2 and Iy1Iy2, which in general contains both zero-

quantum and double-quantum components when these

terms are not equal. For spin exchange, only the zero-

quantum component is desired. Double-quantum con-

tamination results in loss of signal. The double-quantum

component can be eliminated by cycling with alternating

sets of X and Y phase pulses, which averages the cou-

pling in the X and Y directions [36]:
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~~HH~HH 1ðtÞ ¼ 1
2
J cos v0ðtÞ cos b1ðtÞ cos b2ðtÞð
þ cos a1ðtÞ cos a2ðtÞÞ þ sin b1ðtÞ sin b2ðtÞð
þ sin a1ðtÞ cos b1ðtÞ sin a2ðtÞ cos b2ðtÞÞ

�
� Ix1Ix2
�

þ Iy1Iy2
�

þ J cos a1ðtÞ cos a2ðtÞ cos b1ðtÞ cos b2ðtÞ
�

þ cos v0ðtÞ sin b1ðtÞ sin b2ðtÞ½
þ sin a1ðtÞ sin a2ðtÞ�
þ sin v0ðtÞ sin b1ðtÞ sin a2ðtÞ½
� sin a1ðtÞ sin b2ðtÞ�

�
Iz1Iz2: ð2:47Þ

Recall that the second term is a pure flip–flop (zero
quantum) Hamiltonian, as revealed by the expression:

Ix1Ix2
�

þ Iy1Iy2
�
¼ 1=2 Iþ1I�2f þ I�1Iþ2g: ð2:48Þ

The derivations explicitly discussed here apply to small

error angles, but in practice the efficiency of supercycling

schemes for producing a pure zero-quantum Hamilto-

nian is not so restrictive. However, regardless of the

specific form of the toggling frame Hamiltonian, it is

clear that trains of X and �XX pulses alone are insufficient

to eliminate double-quantum contamination.
In practice it is helpful to augment the MLEV scheme

with additional supercycling [35]. The P5 phase alter-

nation scheme has been particularly successful for mix-

ing and decoupling applications with adiabatic pulses

[22,26,27,45], and it also improves the performance of

suitable optimized constant-amplitude pulses as pre-

sented below. One variation of this scheme is P5M4,

which involves MLEV cycling of the P5 element, given
by P5 ¼ f0�; 150�; 60�; 150�; 0�g. Because one P5 cycle of
inversion pulses is itself essentially a composite inversion

pulse, MLEV cycling is still applicable to both the

elimination of single spin rotation errors and their ex-

plicit effects on the spin coupling as outlined above. The

desirability of additional XY cycling also remains ap-

plicable in these more complicated supercycling schemes

because double-quantum contamination is not elimi-
nated by P5/MLEV approaches. In general, very good

mixing sequences can be generated without additional

P5 cycling; however, in practice slightly shorter adia-

batic pulses with improved scaling factors can be ob-

tained using the P5M4 approach, where the P5 unit is

cycled according to MLEV-4 as follows: XX �XX �XX .
3. Development and simulation

It is at high field where adiabatic approaches have the

most potential utility for improving mixing efficiency

relative to composite pulse sequences. Two commonly

employed composite pulse sequences are the DIPSI

[15,16] and FLOPSY [18] schemes. The major advantage
of the DIPSI sequences is that they are suitable for
isotropic mixing over relatively small bandwidths,

whereas the FLOPSY approach was designed primarily

for longitudinal exchange among spins. However, the

simulations given by Peti et al. confirmed that FLOPSY

sequences have much greater bandwidth and better J
scaling properties than the DIPSI sequences [27]. Like

FLOPSY, the approach of mixing via trains of adiabatic

inversion pulses described here has been developed for
the case of longitudinal exchange. Because the FLOP-

SY-16 sequence has the best bandwidth and J scaling

properties among commonly employed sequences, it is

the most appropriate benchmark for comparison with

new adiabatic sequences.

In our experiments we are particularly interested in

optimizing 13C–13C exchange for sidechain assignments

in proteins at high magnetic fields. For 13C in proteins,
the maximum chemical shift dispersion is approximately

60 ppm [1], which corresponds to 8 kHz at 500MHz

magnetic field. However, the maximum chemical shift

difference between neighboring 13C spins corresponds

only to about 53 ppm, i.e., 7 kHz at 500MHz. For 13C

mixing experiments, we routinely employ a constant RF

field strength of 7.7 kHz (i.e., a p pulse length of

64.94 ls) in our experiments at 500, 600, and 750MHz
field strengths. The numerical adiabatic pulse given as

an example in Fig. 2 was computed via the algorithm of

Rosenfeld et al. with a total frequency sweep of 25 kHz.

That pulse provides a nominal 8 kHz frequency band-

width. These parameters are appropriate for the case of

a 500MHz spectrometer. The resulting pulse was 151 ls
in length, obtained by minimizing the pulse timing while

retaining adequate adiabaticity. The numerically calcu-
lated scaling factor for the J -coupling, shown earlier in

Fig. 3, illustrated how the effective J interaction de-

creases with increasing resonance offsets, and it com-

pared the exact two spin behavior with the analytical

treatments developed in the preceeding theoretical sec-

tion. Similar results were obtained using a linear ramp

pulse, which can be treated analytically for the case of

relatively small Dd. Over the bandwidth appropriate for
500MHz, i.e., 7–8 kHz, the analytical results illustrated

in Fig. 3 proved quantitatively accurate, while increasing

divergence in the analytical theory is obtained at higher

offsets. In general, the scaling factor k decreases more

slowly than predicted by Eq. (2.29) because of terms

which are independent of Dd, as seen in Eq. (2.47) when

additional finite pulse effects are considered.

In practical applications, it is particularly in the high
field regime above 500MHz where adiabatic approaches

have themost potential utility for improving the efficiency

of mixing experiments relative to the FLOPSY-16 se-

quence. At 750MHz, for example, the total aliphatic

bandwidth is slightly less than 12 kHz as amaximal range,

while the largest expected shift differences are approxi-

mately 10.5 kHz. Fig. 7 shows two frequency sweeps



Fig. 7. Modified frequency sweeps for use at 750MHz. The numeri-

cally derived pulse is qualitatively similar to the pulse developed for

application at 500MHz. The optimal tan 40 pulse is also shown as a

dashed line. It is in fact almost linear, but is more efficient than linear

ramp pulses experimentally and in simulations.
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which are applicable at 750MHz. The numerically shaped

pulse involves a total 22 kHz sweep at a constant RF field

amplitude of 7.7 kHz. The pulse was calculated to cover a

12 kHz frequency bandwidth of spin resonance offsets.

Using the augmented phase cycle P5M4 [43] with XY al-

ternation, the pulse length could be made as short as
130 ls with good performance. Within the relevant

bandwidth of dj ¼ �6 kHz, Fig. 8 shows a contour plot

which compares the cross-peak intensities given by

FLOPSY-16 and the numerically derived adiabatic pulse
Fig. 8. Contour plot of the cross-peak intensity obtained in a two spin

system as a function of the spin frequencies. The adiabatic sequence

based on the pulse shown in Fig. 7 is compared to FLOPSY-16 at

15.5ms mixing time. Increased efficiency is seen along the ‘‘anti-diag-

onal’’ where d1 ¼ �d2. At the edges, the adiabatic pulse was not de-

signed to perform as efficiently, as almost no spins are found in those

regions at 750MHz.
shown in Fig. 7. In this case, the numerical adiabatic pulse
was applied with the slightly shorter pulse length of 129 ls
in order to enable sampling of the calculations at the same

mixing time as FLOPSY-16 at 15.5ms. For relatively

large values ofDd, where the efficiency of spin exchange is

most markedly reduced, the contour plot shows that the

adiabatic sequence has slightly greater bandwidth. At

the edges, however, there is decreasing performance near

the limits of where the pulse is constructed to behave
adiabatically, i.e., dj ¼ �6 kHz. All simulations were

performed using programs written by the authors which

were optimized for homonuclear systems of two or

three spins.For more convenient implementation, we

have pursued the possibility of applying an analytical

pulse shape which would emulate the shapes of the nu-

merically derived pulses. The shapes of the calculated

pulses, as seen in Figs. 2 and 7, are qualitatively similar to
truncated tangent functions with constant amplitude [32].

Accordingly we optimized a frequency sweep of the form:

dðtÞ ¼ �A tan e t
�n

� s
2

�o
: ð3:1Þ

The initial angle of the tangent is given byH ¼ es=2, and
for our applications at 600 and 750MHz, the best results

have been obtained in the neighborhood H ¼ 40� in

simulations.Here this pulse is designated a ‘‘tan 40’’ pulse.

To accommodate the required sweep width, the parame-

terA is adjusted such that dmax ¼ A tanfes=2g. The tan 40

pulse applied experimentally is also illustrated in Fig. 7.

The theoretical results of Section 2 are quite valuable
in sequence design. However, in addition to the need to

evaluate sequences at larger values of Dd where the small

angle approximations become less accurate, the influ-

ences of phase cycling and finite pulse effects are difficult

to quantify by analytical approximations alone. Ac-

cordingly, we have tested candidate sequences using

exact calculations of exchange in two and three spin

systems. Fig. 9 demonstrates the evolution of exchange
Fig. 9. Two spin simulation with Dd ¼ 10:5 kHz which is appropriate

for a typical threonine Cb–Cc peak separation in a protein at

750MHz. The cross-peak obtained with FLOPSY-16 is reduced es-

pecially at longer mixing times where double-quantum decay becomes

significant. The tan 40 pulse gives almost identical performance to the

numerically derived pulse.



Fig. 10. Decay of total spin polarization in a two spin system during

the FLOPSY-16 pulse sequence. Above the RF field of 7.7 kHz, the

degree of double-quantum contamination in the effective Hamiltonian

seen here becomes increasingly marked and later oscillatory.

Fig. 11. Two spin simulations illustrating the effect of RF inhomoge-

neity on a two spin system which is otherwise like the one shown in

Fig. 9. At an RF field which is lower than nominal, as seen in part (a),

the numerically derived and tan 40 pulses maintain improved mixing

efficiency. It appears that the double-quantum decay property ob-

tained with FLOPSY-16 is worse at lower RF fields. In contrast, the

rate of mixing with FLOPSY-16 increases more rapidly so that at

higher than nominal RF fields there is faster mixing using the com-

posite pulse FLOPSY-16 sequence.
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between two spins with Dd ¼ 10:5 kHz using the pulses
shown in Fig. 7. (In the simulations, note that the curves

for the tan 40 and numerically derived pulses are almost

indistinguishable in most cases.) As reflected in the

contour plot in Fig. 8, exchange is only slightly faster at

shorter mixing times <15ms. However, at longer times,

the adiabatic sequences attain higher intensities. This

behavior results from the fact that the FLOPSY se-

quences retain an effective double-quantum contami-
nant which attenuates total polarization at larger

resonance offsets. Fig. 10 illustrates this decay behavior,

which rapidly accumulates when DdP mRF. At higher

values of Dd, the degree of double-quantum decay be-

comes large and oscillatory. In contrast, there is essen-

tially no significant loss of total signal in spin

simulations of the adiabatic sequences, which are com-

pensated with respect to double-quantum contamina-
tion via XY cycling of the entire phase alternation

scheme.

Another important consideration is the effect of RF

inhomogeneity, which is approximately �7.5% in the

probes employed in this laboratory. Fig. 11 illustrates

how the adiabatic sequences compare to FLOPSY in the

presence of uncertainty about the RF field strength. At

low RF power, i.e., 5% below the nominal value, the
advantage of the adiabatic sequences over FLOPSY is

increased, although both types of sequences exhibit

slower exchange rates. The tendency of FLOPSY to lose

total signal is predicted to increase under these condi-

tions as well. On the other hand, at higher RF power,

i.e., 5% above the nominal field, exchange via FLOPSY

increases more rapidly than that obtained with the adi-

abatic sequences, and FLOPSY exchange becomes
moderately faster. In practice, the results seen experi-

mentally are expected to reflect a complex weighted

average over the RF inhomogeneity, as determined by

the coil and sample geometries.

In the assignment of protein sidechains, the only pure

two spin systems are the Ca–Cb pairs in alanine, as-

partic acid, asparagine, and serine. The Ca–Cb pairs in
the aromatic amino acids can also be viewed as homo-
nuclear two spin systems, barring leakage of magneti-

zations into the aromatic rings, which is a fairly small

effect for these sequences. The most challenging two spin

pair is alanine, where Dd � 6:5 kHz at 750MHz. In all

of the other amino acids, the influence of multiple spin

dynamics is expected to dominate cross-peak intensities.

The simplest example is the three spin system seen in

threonine, glutamine, and glutamic acid. In multiple
spin systems, it is not always possible to obtain complete

exchange of polarization from one spin to another; in-

stead, there is a ceiling on the maximum exchange peak

[5], which may be difficult to calculate, and it depends on

the effective spin Hamiltonian. Fig. 12 illustrates how

the adiabatic and FLOPSY sequences are expected to

behave in a typical threonine residue, beginning with Ca
polarization for illustration. Here parameters which are
appropriate for the Threonine-16 residue in the SH3

domain of CD2BP1 [46] are applied. The threonine Cb–
Cc spin pair is the largest chemical shift difference found

among the aliphatic 13C resonances in proteins, with

typical values Dd � 9 kHz. The Ca, Cb, and Cc fre-

quencies of Threonine-16 are 2.9, 4.6, and )4.5 kHz,

respectively, when the carrier is set to 43 ppm, as typi-



Fig. 12. Three spin simulation illustrating the anticipated behavior of

mixing, beginning with Ca polarization, using parameters appropriate

for the Thr-16 residue of the SH3 domain of CD2BP1. Of note, slower

two spin exchange maps to incomplete mixing at long mixing times

across the difficult spin pair of Cb–Cc, which is an effect of multiple

spin dynamics.
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cally implemented in mixing experiments. An interesting

feature of the exchange process is that the slower

transfer seen in FLOPSY-16 between the Cb and Cc
nuclei maps to a reduced maximum cross-peak intensity
at long mixing times in the three spin case. Therefore,

although the FLOPSY and adiabatic sequences are ex-

pected to behave very similarly when the resonance

offsets are small, it is expected that significant im-

provements should be seen in cases like threonine where

exchange is fairly slow and maximum cross-peak

intensities are limited by the slow Cb–Cc exchange

process.
Fig. 13. Two dimensional 1H–1H spectrum of the SH3 Domain of

CD2BP1 obtained using a mixing sequence based on the numerically

derived pulse shown in Fig. 2. This spectrum was obtained via ex-

change among 13C spins, although their directly bonded aliphatic

protons are detected, as shown here. In part (a), two regions, A and B,

are defined in order to investigate integrals over many spin exchange

processes. The smaller region shown in the right lower quadrant, and

indicated by an arrow, is expanded in part (b). Here the peaks as-

signments are shown. Most of these are overlapping, but both Thr-16

cross-peaks are isolated and available for integration. The Ala-27 peak

(now shown) is also cleanly isolated. The experiment was performed at

500MHz on a Bruker 500 outfitted with a Bruker cryogenic probe.

This probe is useful because it increases the sensitivity of NMR ex-

periments by approximately three-fold. The RF field was 7.7 kHz, a

fairly typical value for this application.
4. Results

The main application discussed in this paper is

HCCH–TOCSY, which is usually implemented as a

three-dimensional experiment, as reviewed in the

monograph of Cavanaugh et al. [1]. However, to explore
various conditions efficiently, we have acquired two-di-

mensional 1H–1H spectra, where the cross-peaks were

obtained via 13C–13C TOCSY applied to relayed co-

herences from the observed 1H nuclei. The application

of a simple adiabatic sequences is shown in Fig. 13. The

protein is the 7 kDa SH3 domain from the CD2-related

signaling protein CD2BP1 [46]. Fig. 13a illustrates the
1H–1H spectrum obtained via 13C–13C exchange. The
larger boxes (region A in the left upper, region B in

the right lower) are defined for the purpose of examining

regional integrals. This spectrum was acquired using the

numerically defined adiabatic pulse shown in Fig. 1 with

alternation of the pulse phases according to both

MLEV-16 and XY cycling. Performed on a Bruker

500MHz spectrometer using a recently introduced

Bruker cryoprobe, the nominal RF field strength was
7.7 kHz. Although the exchange dynamics under study

here are the same in two- and three-dimensional versions
of the HCCH–TOCSY experiment, the 2D planes ex-

hibit extensive spectral overlap among different 1H nu-

clei, as seen in Fig. 13b, where the resonance

assignments are labeled explicitly. However, the Ca–Cb
and Ca–Cc cross-peaks of Threonine-16 are isolated



Fig. 14. Threonine-16 Ca+Cb to Cc cross-peak intensities with linear

frequency sweeps after 144 mixing pulses performed at 600 MHz. The

mixing times corresponding to the pulse lengths 130, 140, and 150ls
were 18.72, 20.16, and 21.6ms, respectively. The phase cycle was

MLEV-16 with XY phase alternation, and the nominal RF field am-

plitude was 7.7 kHz.

Fig. 15. Experimental cross-peak intensities obtained from mixing ex-

periments performed on a Varian 750 spectrometer. The nominal RF

field was 7.7 kHz, the pulse length 130ls. Both adiabatic pulses exhibit

improvements in these isolated two and three spin systems with large

chemical shift differences. The advantage of the adiabatic approaches is

greater at longer mixing times as predicted by the simulations. In part

(a), the Ca–Cc cross-peak is added to the Cb–Cc cross-peak in order to

assess total exchange across Cb–Cc. In part (b), improved results are

also obtained for Ala-27, which has a two spin pair.
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and can be cleanly integrated. In a similar way, the Ca–
Cb peak of Alanine-27 is spectrally isolated (not shown

in Fig. 13b) and is suitable for quantitative study of the

exchange dynamics.

The backbone and sidechain chemical shifts of the

SH3/CD2BP1 module were obtained via standard

backbone chemical shift experiments (HNCA, HNC-

OCA, HNCACB, and HNCOCACB) performed on a

Bruker 500MHz spectrometer [1]. The sidechain as-
signments were obtained via a three-dimensional

HCCH–TOCSY spectrum acquired on Bruker 600MHz

machine. The SH3 domain was expressed as a thrombin

cleaveable GST fusion protein using a construct based

on the pGEX-4T-1 vector (Pharmacia). The plasmid

construct was provided by our collaborators Jing Li,

Ellis Reinherz, and co-workers [46]. Isotope-enriched

M9 medium was used in order to make 13C, 15N-labeled
protein, and the product was purified by cleaving the

SH3 domain from the GST fusion partner after an-

nealing the fusion protein to GST resin. In addition to

removal of thrombin by benzamidine resin, further pu-

rification via gel filtration chromatography was found

necessary to stabilize the sample with respect to prote-

olysis. The NMR experiments were performed with a

250 lL sample in a Shigemi NMR tube at 0.64mM final
protein concentration in a 18mM phosphate buffer at

pH 6.7 with 130mM NaCl and 10% D2O for magnet

locking. The sample has shown >90% stability after six

months if trace quantities of protease inhibitors are in-

cluded in the final buffer.

Experimentally, in addition to their role as a model

system, it was found that simple linear ramp pulses

perform fairly well in 13C–13C exchange experiments at
600MHz but are moderately less efficient than the more

carefully optimized pulse sequences also presented here

by approximately 10–20%. Still, we found it instructive

to explore mixing behavior with respect to the frequency

sweep and pulse length in HCCH–TOCSY experiments.

Experimentally, significant signal losses were observed

following application of the mixing cycle outside the

neighborhood of dmax � 11 to 12 kHz and s � 130 to
150ls. Fig. 14 illustrates the dependence of the Thre-

onine-16 cross-peaks acquired using a Bruker 600

spectrometer outfitted with a triple resonance probe

made by Nalorac as the pulse parameters are varied. In

this plot and in Figs. 15 and 16 below, the intensities of

the Ca–Cc and Cb–Cc peaks are added together in or-

der to assess the total transfer from Cb to Cc, which is

rate-limiting. The best results were obtained with
dmax � 11 kHz. As the pulse length s is increased, better
performance is expected at points of lower RF power in

the sample coil while exchange slows down at points

near the nominal RF field strength, according to the

analytical theory of Section 2. Here the optimal point is

obtained at approximately s � 140ls. In these experi-

ments, a total of 144 pulses was applied to complete a
full phase cycle, and accordingly it should be kept in

mind that the total mixing time is increasing as the pulse

length s is increased. Accordingly, the shortest pulse s
which yields maximum intensity is close to the optimal

value.

Using the more tailored pulse shapes given in Figs. 7
and 15, illustrates that the theoretically predicted



Fig. 16. Experimental cross-peak intensities obtained from mixing

experiments performed on a Bruker 600 spectrometer. The nominal

RF field was 7.7 kHz, the pulse length 134ls. Both adiabatic pulses

exhibit improvements in the these isolated two and three spin systems

with large chemical shift differences, as in the case of 750MHz mag-

netic field. The advantage of the adiabatic approaches is greater at

longer mixing times as predicted by the simulations. In part (a), the

Ca–Cc cross-peak is added to the Cb–Cc cross-peak in order to assess

total exchange across Cb–Cc. In part (b), improved results are again

obtained for Ala-27. For all approaches mixing is more rapid at lower

field because of the reduced scaling factor obtained as Dd increases.

Fig. 17. Regional spectral intensities at 750MHz magnetic field ob-

tained from regions A and B defined in the spectrum shown in Fig.

13a. Although the curves are similar for the adiabatic and FLOPSY-16

sequences, multiple spin dynamics and averaging over many different

spin exchange events are expected to lead to small differences which are

hard to predict if both sequences should yield negligible signal losses.

(For most of these spectral regions, the values of Dd are too small to

yield significant double-quantum decay using the FLOPSY-16 se-

quences). In region B, many exchange events are from Ca to other

nuclei in the carbon skeleton of amino acids. The slightly reduced total

peak intensity seen in this area using adiabatic sequences is likely the

result of either multiple spin effects or possibly leakage to aromatic

sidechains.
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enhancements in the cross-peaks of threonine and ala-

nine, illustrated in Figs. 8–12, are also seen experimen-

tally in the SH3 domain on a Varian 750MHz machine

using a triple resonance probe. The cross-peaks are as-

sociated with the Threonine-16 and Alanine-27 residues.

The spin pair in Alanine-27 has a chemical shift differ-

ence of Dd ¼ 6:8 kHz, as expressed in terms of fre-
quency. It is seen that the long time limit for the total Ca
and Cb to Cc intensity is reduced using FLOPSY-16 as

expected from the reduced exchange efficiency predicted

at moderately high Dd. Similar behavior is also seen in

Fig. 16 using the Bruker 600 spectrometer. The analyt-

ical shape tan 40 yields similar results in all cases and

provides an alternative to the numerical approach that is

easier to implement. (Indeed, the data given by the tan
40 pulse is mostly overlapping with the points given by

the numerical approach in Figs. 15–17). Likewise, in

both cases, exchange with adiabatic pulses is more rapid

in alanine as predicted by simulations.

In other spectral regions, the results are more com-

plex because of additional multiple spin dynamics and

extensive spectral overlap. Indeed, the expected behav-

ior for most other cross-peaks is highly oscillatory, and
the exchange dynamics are much more complex than for

the two and three spin systems. Specifically, even if the

underlying spin dynamics are similar or on average

faster with a given sequence, it is possible to obtain

smaller total cross-peak intensities at a given mixing

time at times when most of the peaks are decreasing.

Fig. 17 illustrates fairly comparable performance in how

the total integral of one spectral region behaves as a
function of time. In the region B, the slightly lower

maximum intensity at longer mixing times seen with the

adiabatic sequences likely reflects some leakage of signal

to aromatic sidechains, as well as possibly different be-

havior with multiple spin dynamics in the presence of

inhomogeneous RF fields.
5. Discussion

Previous theoretical work aimed at describing mag-

netization exchange stimulated by RF irradiation has

focused on the perspective of continuous-wave fields as

reviewed by Glaser and Quant [5]. This approach has
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provided much insight into the resonance-offset depen-
dence of composite pulse sequences, although calcula-

tions are usually needed to predict mixing behavior

quantitatively given the complexity of the spin dynam-

ics. The potential for applying adiabatic pulses to mix-

ing is attractive because of their tolerance to frequency

offsets and RF amplitude inhomogeneities [21,23].

However, with adiabatic pulses, the most appropriate

model of the pulse sequence is a train of inversion pul-
ses. Accordingly, we have developed a novel theory of

how mixing behaves with inversion pulses, and we spe-

cialize to the case of linear ramp pulses as a model

system, which permits a detailed development of ana-

lytical expressions.

Two key results of this novel theoretical approach are

that mixing is most efficient using short pulses, which

has been previously observed empirically [27], and that
amplitude modulation of the pulse diminishes the ex-

change rate via a reduction in chemical shift scaling.

Based on these observations, we have pursued the pos-

sibility of applying short adiabatic pulses of constant

amplitude. Although the linear ramp ‘‘chirp’’ pulse is a

good model system, we have also optimized pulse se-

quences by testing numerically optimized adiabatic

pulses in two and three spin simulations. We have found
that it is possible to tune these sequences to the required
13C bandwidth in the useful range from 500 to 750MHz,

and the approach seems amenable to scaling up to

higher fields as well.

In practice it is difficult to compete directly with the

best known composite pulse sequence, FLOPSY-16,

within its bandwidth because it was developed by global

numerical optimization via adjustment of multiple pa-
rameters [17]. As shown here, its excellent scaling factor

seems to come at the expense of total signal decay in the

regime of long mixing times because of double-quantum

decay. Although this issue has never been discussed

previously to our knowledge, the decay of total signal

can be inferred even from the original papers which

introduced the FLOPSY sequences [17,18]. This limita-

tion does not apply to adiabatic sequences with suitable
XY phase cycling. The comparison of the FLOPSY and

adiabatic approaches with respect to RF inhomogeneity

is also interesting. At lower RF fields, the adiabatic

approach is more efficient because of more rapidly de-

creasing scaling factors found using FLOPSY. At some

point higher than the nominal value, however, the

scaling behavior becomes superior using FLOPSY.

As demonstrated here, numerically derived adiabatic
sequences can be developed which exceed the perfor-

mance of the FLOPSY sequences at moderately higher

values of Dd. At 600 and 750MHz, however, it seems

that the adiabatic approach offers moderate advantages

over FLOPSY for the most difficult cross-peaks to ob-

tain in HCCH–TOCSY experiments. For greater ease of

implementation, the analytical shape tan 40 is a suitable
substitute. The tan 40 pulse is a type of constant/tan
pulse and is also somewhat analogous to the tanh/tan

pulses introduced by Garwood and co-workers [28], al-

though here the amplitude of the RF field is constant.

Interestingly, Peti et al. have already applied the tanh/

tan approach to 13C–13C exchange over the aliphatic

bandwidth [27]. The tanh/tan pulse [28] is particularly

time-efficient compared to alternatives such as the sech/

tanh pulse [42]. Accordingly, it is a well-suited choice
among the numerous amplitude-modulated adiabatic

waveforms which are available. According to the cal-

culations of Peti and co-workers [27], however, the tanh/

tan and related BIR approaches are not as broad-ban-

ded as FLOPSY-16 with respect to Dd for the 13C–13C

application. In 1H–1H mixing, on the other hand, where

the mixing times are typically longer and the phase cycle

can be extended, the tanh/tan pulse can be the basis of a
sequence which is theoretically as efficient as FLOPSY

[27]. An important theoretical disadvantage of ampli-

tude-modulated waveforms is that chemical shift scaling

is less efficient during periods when reduced RF power is

applied. More generally, it appears that relaxation of the

adiabatic condition leads to shorter pulses which may be

advantageous for mixing. Semi-adiabatic inversion pul-

ses with constant amplitude, such as the BIP pulse of
Shaka and co-workers [47] and the pulses discussed

here, provide alternative approaches which maximize

chemical shift scaling and could prove useful for mixing

applications.

In the future, when experiments are performed at

900MHz and above for maximum sensitivity and reso-

lution, the FLOPSY-16 sequence will become increas-

ingly inadequate when chemical shift differences are
especially large, as in alanine and threonine. Unlike

FLOPSY, the range of the adiabatic sequences can be

scaled by designing new pulses which cover a larger

bandwidth. Although it should usually be possible to

generate practical exchange sequences using the princi-

ples established in Section 2, it seems unlikely that a

superior scaling factor to the composite pulse approach

can be simultaneously preserved at small values of Dd
with greater extension of the total bandwidth. Moder-

ately slower exchange at small values of Dd, however, is
unlikely to have much practical significance, and it will

likely be preferable to apply adiabatic sequences which

can generate all possible cross-peaks in the very high

field regime.

There are several interesting avenues to pursue in the

future. Specifically for the 13C–13C aliphatic mixing
problem pursued here, it would be helpful to understand

the multiple spin dynamics better in networks of greater

than three spins. These calculations would increase the

current understanding of how to optimize the applica-

tion of homonuclear mixing sequences to multiple spin

systems which exhibit many different chemical shifts.

For structural biology applications, these studies would
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be most helpful if applied directly to the amino acids
and nucleic acids found in biopolymers. Likewise, for

application to larger proteins, the inclusion of relaxation

effects in simulations would be helpful and could be very

important in choosing the best pulse sequence. In this

work we have examined longitudinal exchange in a

7 kDa protein. However, given fast relaxation of higher

order coherences, it is likely that longitudinal exchange

is also the best approach in larger proteins, although this
issue has not been explicitly studied to our knowledge.

As a practical matter, difficulty in assigning 1Ha shifts is

a commonly encountered problem in larger proteins

(>20 kDa) due to rapid transverse spin relaxation.

Furthermore, in larger proteins, the most promising

approach to sidechain assignment is to apply 13C–13C

exchange experiments with 15NH filtering. An example

is the HCCONH experiment [12]. Future work could
build on the principles established here to pursue this

interesting application more explicitly. The theoretical

framework developed here is highly general and should

also be applicable to 1H–1H TOCSY experiments, which

are often applied to assign aromatic sidechains in pro-

teins, and alternative adiabatic approaches to the 13C–
13C aliphatic exchange problem. In addition, there is the

possibility of extending this approach to 13C–13C ex-
change between aliphatic and aromatic 13C resonances,

which are separated by approximately Dd � 17 kHz at

750MHz. Such an application is likely feasible if higher

RF power could be applied routinely using future probe

designs.
6. Conclusion

This paper has introduced a novel theoretical frame-

work for understanding how coherence exchange can be

stimulated via trains of inversion pulses. This theory was
also extended to the case of adiabatic inversion pulses

with arbitrary shape and carried out analytically for the

case of a linear frequency sweep with constant RF am-

plitude. This pulse was found to be a good model for

numerically generated constant amplitude pulses which

are directly applicable to 13C–13C exchange at high

magnetic field. Although the additional enhancement in

exchange efficiency is moderate for the 13C aliphatic ap-
plication discussed here, we have shown that our ap-

proach is superior to the best known composite pulse

technique for the most widely separated 13C–13C pairs at

600 and 750MHz. The simpler analytical shape tan 40 is

able to provide comparable results. At typical RF field

strengths, increasing signal losses and limitations on the

maximum bandwidth are predicted with composite pulse

sequences such as FLOPSY-16 as the magnetic field is
increased. Accordingly, the more flexible framework

provided by adiabatic pulses will likely give them an

increasingly decisive advantage at higher fields.
The principles established here are of very general
applicability in the analysis of adiabatic pulse sequences

and include an improved understanding of the roles of

pulsing rate, chemical shift scaling, and double-quantum

contamination. The role of the latter effect in attenuat-

ing the cross-peaks in composite pulse mixing sequences

was also introduced and is an important limitation of

the FLOPSY sequence at larger bandwidth. The prin-

ciples introduced here should be of general utility in the
design of adiabatic mixing sequences in a variety of

contexts.
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Appendix A

A.1. Approximate calculations of the scaling factor with a

linear ramp pulse

Optimization of the value of a in Eq. (2.33) requires

that the following integral be set to zero:Z s=2

0

dt vðtÞf � Dd � atg � Dd � atf g ¼ 0: ðA:1Þ

For the linear ramp pulse, the phase factor can be

integrated analytically:

vðtÞ ¼ Dd
Z t

0

dt0
dmax � kt0
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax � kt0ð Þ2 þ m2RF

q
¼ Dd

Z dmax

dðtÞ

dd
2k

2dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ m2RF

q
¼ Dds

2dmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2max þ m2RF

q�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax � ktð Þ2 þ m2RF

q �
:

ðA:2Þ

With this expression for the accumulated phase, the

condition given by Eq. (A.1) leads to the expression:
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s=2

0

dt t at � s
2dmax

d2max þ m2RF

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax � ktð Þ2 þ m2RF

q ��
¼ 0; ðA:3Þ

which in turns yields:

a
Z s=2

0

dt t2 ¼ s
2dmax

Z s=2

0

dt t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2max þ m2RF

q�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax � ktð Þ2 þ m2RF

q �
; ðA:4Þ

and accordingly

a ¼ 2

s

� �3
3s

2dmax

1

2

s
2

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2max þ m2RF

q�

�
Z s=2

0

dt t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax � ktð Þ2 þ m2RF

q �
: ðA:5Þ

The remaining integral can be solved as follows

Z s=2

0

dt t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax � ktð Þ2 þ m2RF

q

¼ �1

k

Z s=2

0

dt dmaxð � ktÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax � ktð Þ2 þ m2RF

q

þ 1

k

Z s=2

0

dtdmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax � ktð Þ2 þ m2RF

q

¼ 1

3k2
m3RF

n
� d2max

�
þ m2RF

�3=2o

þ s
2

Z s=2

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax � ktð Þ2 þ m2RF

q

¼ 1

3

s
2dmax

� �2

m3RF

n
� d2max

�
þ m2RF

�3=2o

þ 1

2

s
2

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2max þ m2RF

q
þ 1

2

s
2

� �2 m2RF

dmax

� ln
dmax

mRF

8<
: þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2max

m2RF

s 9=
;; ðA:6Þ

using the solution to the integral
R s=2
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax � ktð Þ2 þ m2RF

q
provided in Appendix A.2. Substi-

tution of the result given in Eq. (A.6) into Eq. (A.5)

leads to the final analytical expression for a, also given

in Eq. (2.34):

a ¼ 1

 8<
: þ m2RF

d2max

!3=2

� m3RF

d3max

9=
;

� 3m2RF

2d2max

ln
dmax

mRF

8<
: þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2max

m2RF

s 9=
;: ðA:7Þ
A.2. Calculation of the net precession angle during a

linear ramp pulse

The integral of Eq. (2.36) is solved via a change of

variables using the identities dðtÞ ¼ dmax � kt and

dmax ¼ ks=2:

X ¼
Z s

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðtÞ þ m2RF

q

¼ 1

2

Z s=2

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax � ktð Þ2 þ m2RF

q

¼ s
dmax

Z dmax

0

dd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ m2RF

q
; ðA:8Þ

followed by application of the following known solution
to the integral [48]:Z

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
¼ 1

2
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
þ 1

2
a2 ln x

n
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p o
:

ðA:9Þ
The final result can be expressed as follows when

mRF > 0:

X ¼ s
dmax

1

2
dmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2max þ m2RF

q�
þ 1

2
m2RF

� ln dmax

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2max þ m2RF

q �
� 1

2
m2RF ln

ffiffiffiffiffiffiffi
m2RF

q� ��

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2max þ m2RF

q8<
: þ m2RF

dmax

� ln
dmax

mRF

2
4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2max

m2RF

s 3
5
9=
; � s: ðA:10Þ
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